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Abstract

A very simple way to improve the performance of almost any miree learning
algorithm is to train many different models on the same daththen to average
their predictions [3], Unfortunately, making predictiomsing a whole ensemble
of models isMe and may be too computationally eskgeeto allow de-
ployment to a large number of users, especially if the irttliai models are large
neural nets. Caruana and his collaborators [1] have shoatrittis possible to
compress the knowledge in an ensemble into a single modehvigimuch eas-
ier to deploy and we develop this approach further usingferdifit compression
technique. We achieve some su};prlsmg results on MNIST amdhvow that we
can significantly improve thwl of a heavilydusemmercial system
by distilling the knowledge in an ensemble of models intagk model. We also
introduce a new type of ensemble composed of one or more adets and many
specialist models which learn to distinguish f f|ne gragrladses that the full mod-

els confuse Unlike a mrxture of experts' thbse specralmllels can be trained
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Many insects have a larval form that is optimized for exiragenergy and nutrients from the envi+ {7’
ronment and a completely different adult form that is optied for the very different requlrement§Ll \
of traveling and reproduction. In large-scale machinerliedy, we typically use very similar modelss 7 —\1
for the training stage and the deployment stage despitevtbgy different requirements: For tasks J’Ik n e
like speech and object recognition, training must extraxatsure from very large, highly redundant
_datasets but it does not need to operate in real time and s@a@ hu%ﬁﬂmount of computation. } l
iDeployme t to a large number of users, however, has much sirimgent’ wrements Q’]_l_"i‘..t_e_”i@& | l

ational resources. The analogy with |nsectsei11|gg1at we should be willing to train

very cumbersome models if that makes it easier to extraattsire from the data. The cumbersom;aEJ W/r* 4 ?’riwa «j ﬁ
model could be an ensemble of separately trained modelsinglke sery large model trained with 1=~
a very strong regularizer such as dropout [9]. Once the cusobge model has been trained, g)ze w) i({] ﬁ_p,gf%%?j i
can then use a different kind of training, which we call “diation” to transfer the knowledge from
the cumbersome model to a small model that is more suitablddployment. A version of th@vﬁé Y.
strategy has already been pioneered by Rich Caruana andllabarators [1]. In their important
paper they demonstrate convincingly that the knowledgeieed by a large ensemble of models

can be transferred to a single small model,/qx.i\mﬁﬂ‘j@\&‘ kT 4 % j N AE
A %&ptual lfl%c% that may have prevented more investigaf this very promising approach |s'ﬁf - l '%k'\‘ W

that we tend to identify the knowledge in a trained mode! hgilearned parameter values and.t
makes it hard to see how we can change the form of the modeébpttke same knowledge Am

-

abstract view of the knowledge, that frees it from any patéicinstantiation, is that it is a Iearned /} (3 5 El’l b ﬁ
C VAR AT
*Also affiliated with the University of Toronto and the Caredlinstitute for Advanced Research. “’} ! 14 ! ,
TEqual contribution. /ﬁ/u/i*"f fup 1 ?‘_ \
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mapping trom input vectors to output vectors. For cumbefsmmdels that learn to d|scr|m|n%% “%)
between a large number of classes, the normal training mh;els to maximize the average Iog
probability of the correct answer, but a side-effect of #harhing is that the trained model assigns
probabilities to all of the incorrect answers and even wihesé probabilities are very small, som§ uA -jf b
of them are much larger than others. The relative probagsildf incorrect answers tell us a lot abotit— "
how the cumbersome model tends to gene_T'“é—K‘Jmage‘BT’WHM example may only hav%AH
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probable than mistaking it for a carrot. 4},}3&1 £5) ﬂ,ﬂ}@ﬁ}#é}ﬂ#ﬂ{/r?’\z asl, 2y q g";l

Itis generally accepted that the objective function usedroning should reflect the true objective. . .A/2
of the user as closely as possible. Despite this, modelssaraly trained to optimize performancé;)\) Jf’ ]
on the training data when the real objective is to generalizt to new data. It would clearly _ . V-
be better to train models to generallze well, but this rezgiinformation about the correct way to%, i’EﬂQ -
BT 0 77 generalize and th|s_ information is not normally avaﬂabWhen we are distilling t_he _knowledge f
PE .. fromalarge modelinto a small one, however, we can trainiteisnodel to generalize in the sam 7174‘.’: \
ij:tjfgﬂt%%?t‘i@-‘{a way as the large model. If the cumbersome model generalizédacause, for example, it is the

s ot average of a large ensemble of different models, a small hi@dleed to generalize in the same way

[INRI will typically do much better on test data than a small mobat is trained in the normal way on the

same training set as was used to train the ensemble. g

5 mﬁgigﬂz An obvious way to transfer the generalization ability of tuenbersome model to a small model is
o to use the class probabilities produced by the cumbersonaengg™
Zo B R small model. For this transfer stage, we could use the saimertg parate ‘transfer” set.
BTy When the cumbersome model is a large ensemble of simplerlmade can use an arithmetic or

Jy ) geom. mean of their individual predictive distributias the soft targets. When the soft targets

y, they provide much more information mntng case than hard targets and much

¢ tonget
5"# ‘taj _lessvariance in the gradlent between training cases, smtlatb model can often be tralned on much

fnjk Qﬁﬂf)[?( o “For tasks I|ke MNIS‘I’T in w”Fnch the cumbersome model almostgvproduces the correct answer -5
/ with very high confldence much of the information about #srhed functign resides in the ratios 9 }3
L of very small probablhtles in the soft targets. For exampuiee version of a2 may be given a ' 9
- f‘i" T8 Hk probability of 106 of being a 3 and 0~ of being a 7 whereas for another version it may be the_% [O
‘ other way around. This is valuable information that defingslasimilarity structure over the data
(i. e. it says which 2’s look like 3's and which look like 7’s) but ik very little influence on the ther
__cross-entropy cost function during the transfer stage U the probabilities are §g_9j_o$eto¢ero7 0
“[Caruana and his collaborators circumvent this problem liyguthe logits (the inputs to the final od
S soﬁmax[rather than the probabilities produced by thensaftas the targets for learning the small ﬂym'ttm
, model and they minimize the squared difference betweenatits|produced by the cumbersome ¢
“model and the logits produced by the small model. Our moregsolution, called “distillation” ,Z ) @5
1 . is to raise the temperature of the final softmax until the cersbme model produces a suitably sofa 9“ !
set of targets. We then use the same high temperature wheingrthe small model to match these 5—%7
soft targets. We show Iater that matching the logits of thmlwersome model is actually a specid 1/%( 5 ;ﬁ ) |

case of distillation. JLS ﬁ-ﬁ?fﬁﬂ ?%ﬁ ﬁi? ‘%’} ﬂ”ﬁ%%\ FJ OOMB’% %&ﬁé)\ﬁﬁf’gg
The transfer set thal d to train the small model cowh!;lst)entlrely qj»ﬂﬁTé’beied data [1]

or we could use the 0r|g|nal training set. We have found tisarigithe originat-trairi i
well, especially if we add a small term to the objective fumetthat encourages thml &J ;,)\?me
to predict the true targets as well as matching the soft taqg®vided by the cumbersome model.

““Typically, the small model cannot exactly match the sofgéss and erring in the direction of the 7}_}% Q}Pﬁ]%
correct answer turns out to be helpful.
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Neural networks typically produce class probabilities bing a “softmax” output layer that converts
the logit, z;, computed for each class into a probability,by comparing:; with the other logits.

~exp(z/T) —!rgmﬁl???‘:‘\ !iﬁa'f\ %,k

4% == _ 7. 7™ __z_m_.,‘r;f"-:{_v“ !
ZjexP(ZJ/T) ';-’EL}M .)f%fnf;ﬁ) ) ﬁfg‘fmgoﬁl
, g @)% _onsy

i3

,_is



o Semss hard Label | FRbpRGTR (bgit)  BFRE 121 ofms  RERE T3 wfx
| e - st lo% (T3 =

- e = r
= 2789 F cfctre?

su manie] (gl

-~ e , = 0.0058 0 —lo ehetee” e
e R e i ook xlogloms®)t
e = et =0 " o, -4l 0o xf'j{”'ﬂi‘?‘?)?
o TEET ‘ Feee T e 0-046px109(03)170)1
Thae > o T TR 07 0biT)]
whereT is a temperature that is normally setito Using a higher value fof" produces a softer
/4 probability distribution over classes. e

| M /

In the simplest form of distillation, knowledge is transt= to the distilled model by training it ¢ L TS g ey I
a transfer set and using a soft target distribution for easle in the transfer set that is producec " i S grmsniR
using the cumbersome model with a high temperature in itensof. The same high temperatur ’*i";j;j;mmmm#

used when training the distilled model, but after it has begined it uses a temperature of 1. A TLARIAR oft et

When the correct labels are known for all or some of the tearssdt, this method can be significantly ~— —+ 1 fas§
improved by also training the distilled model to produce tberect labels. One way to do this i mtg 50# v
e to use the correct labels to modify the soft targets, but wmdathat a better way is to simply use .
«Uﬂ";&tﬁg a_weighted average of two different objective functions.e Tinst objective function is the cross| E havd 0SS
entrop;?WM‘ﬁ"t”rg"eTs and this cross entropy is cdatpusing the same high temperature i -

the softmax of the distilled model as was used for generatiagoft targets from the cumbersomge>

model. The second objective function is the cross entroply thie correct labels. This is computed

using exactly the same logits in softmax of the distilled eldulit at a-temperature of 1. We foun

that the best results were generally obtained by using aiderably lower weight on the secon

objective function. Since the magnitudes of the gradierddpced by the soft targets scalela§™ Se[

it is important to multiply them byl”> when using both hard and soft targets. This ensures thatthe
relative contributions of the hard and soft targets remairghly unchanged if the temperature used
for distillation is changed while experimenting with mgtarameters. 2 b A
e = 23T IR L0 AN ity TR Yz i‘;’?‘F’;-T@'gi/
: o : o argE RETER R 1 58I Mgits TP RHE ) ’
2.1 Ma}t_gh_m_g__!g_gns is a special case of distillation N JH w :vf%,jam B
Each case in the transfer set contributes a cross-entraujiemt, dC/dz;, with respect to each
logit, z; of the distilled model. If the cumbersome model has logjtsvhich produce soft target
probabilitiesp; and the transfer training is done at a temperatufE,dhis gradient is given by:
s s % ) A B L .
b M%’ﬂ?;ﬁf ac 1 1 [ T &
P BB RIAEEELT =7 (@ —p) =7 - . @
(

dz; T T\Y . es/T Y evilT
J J :
\“"‘N “
/l?ﬁ’?\.@@\&%ﬁ If the temperature is high compared with the magnitude ofdbés, we can approximaté‘:\/\"_\_‘s &gﬂﬁ\% s
oc 1 14 2;/T 1+4+v;/T . X %
— = — A 3 Ay L = e
9z T <N+2jzj/T N+2jvj/T> @ et
- 3 ‘Vﬁz w H“.?(
AR T AR If we now assume that the logits have been zero-meaned s$elydiar each transfer case so that
b EBIS S 3525 = 3305 = 0 Eg. 3simplifies to: 2,2 BERARR) gt

oC 1
oz ~ W (.Z_i,‘—. Uz_'_) Vi s ;;%},,ﬁg,% f’smg\, ;g}g‘ﬁ (4)

% ‘i‘f:ﬁ M=aEy! So in the high temperature limit, distillation is equivaiemminimizing1/2(z; — v;)?, provided the 1B :%_f%ﬂi TR:

y-\.— . . . .
,,‘ logits are zero-meaned separately for each transfer (Mrtqu erat , distillation pays—
A4 ¢ much less attention to matching logits that are much morathegthan the"average. This is pOte’l,lqﬁfj‘gg kg‘s‘t,ﬂli.ﬂ‘]

, 110t @EE tially advantageous because these logits are almost ctehpilerconstrained by the cost functio i
Jig : used for training the cumbersome model so they could be mw:}m%%mg, the vegjtmm#ﬁ'&;io,.ﬁ?
PP RDED > negative logits may convey useful information about thevkledge acquired by the tumbersom ERNOSE:
ALY %1&{?&3 . model. Which of these effects dominates i'rical tipresWe show that when the distillefﬁg:ﬂE“S“t‘?"ﬂ"”ﬁ’\gl 1 L
&«f“&{é?ﬂmﬁ’ﬁ” % model is much too small to capture all of the"khowledege indlmbersome model, interme%—
g/" ' .ate temperatures work best which strongly syggests thatiigmthe large negative Togits can be

L ek > B LL/g
eI helpful
B
3 Preliminary experiments on MNIST gﬂgif‘&wiﬁh)ﬂ

_To see how well distillation works, we trained a single largaural net with two hidden layers

Zell) of 1200 rectified linear hidden units on all 60,000 traini@ges. The net was strongly regularized
using dropout and weight-constraints as described in [EdpDut can be viewed as a way of training
an exponentially large ensemble of models that share wseidhtaddition, the input images were




N J—— Ak
JarbiEE.—> 7# ELE
£ R ’fl'?“‘jrfﬁ
"ﬁétm\fvitht\'fvo hldden layers of 800 rectified linear hidden sigind no regularization achievied 14 46
errors. Butif the smaller net was regularized solely by agdne additional task of matching the soft
targets produced by the large net at a temperature of ZGniitaest errors. This shows that
soft targets can transfer a great deal of knowledge to th#lelismodel, including the knowledge
about how to generalize that is learned from translateditrgidata even though the transfer set does
not contain any translations.

—— ‘f’f‘;g!‘ {_'{ia:j A 3?\ /g?& s

When the distilled net had 300 or more units in each of its tiddén layers, all temperatures above
8 gave fairly similar results. But when this was radicallgiueed to 30 units per layer, temperatures
in the range 2.5 to 4 worked significantly better than highdower temperatures.

o
We then tried or?ngﬁ ng all examples of the digit 3 from thensger set. So from the?_te,rsoe_c‘l kﬁ }LNO( fﬁfgf‘t
of the distilled model, 3 is a mythical digit that it has negeen. Despite this, the distilled model ¥

only makes 206 test errors of which 133 are on the 1010 thretheitest set. Most of the error éa ‘IF)/

are caused by the fact that the learned bias for the 3 classdh too low. If this bias is increase

by 3.5 (which optimizes overall performance on the test, $keé) distilled model makes 109 errors ~- .- %3_ ,\;’-@
of which 14 are on 3s. So with the right bias, the distilled mlagkts 98.6% of the test 3s correqt :51731'_&

despite never having seen a 3 during training. If the trarssfecontainenlythe 7s and 8s from the i\m bmt,,_
training set, the distilled model makes 47.3% test errarswinen the biases for 7 and 8 are redu edm)_,

by 7.6 to optimize test performance, this falls to 13.2% ¢estrs.

_ A BERE RE
4 Experiments on speech recognition

In this section, we investi ate the effects of ensemblin Bleural Network DNN acoustic 5

that we propose in this paper achieves the desired effedstifidg an ensemble of models into a; ﬁ, E@._?_ )
single model that works significantly better than a modelhef $ame size that is learned dlrectly 2 ‘ .
.,gg%gﬂ_\,ﬁ@

from the same training data. P
\} B"“z '_-r,
State-of-the-a systems currently use DNNs to map ar{skemporal context of feature - I
CASR sy y p ar(stempor, 343 M

derived from thewaveform to a probability distribution otee discrete states of a Hidden Mark
Model (HMM) [4]. More specifically, the DNN produces a prolilép distribution over clusters of
tri-phone states at each time and a decoder then finds a patlgtithe HMM states that is the best
compromise between using high probability states and pmogLa transcrlptlon that is probable

under the language model. ;2 %35 3% > & — | ,;/5 7 @2 2. ’d-fl ’fél

Although it is possible (and desirable) to train the DNN umh;ta way that the decoder (and, thus,
the language model) is taken into account by marginalizireg all possible paths, it is common to
train the DNN to perform frame-by-frame classification bycglly) minimizing the cross entropy
between the predictions made by the net and the labels givaridrced alignment with the ground
truth sequence of states for each observation:

0= arg max P(h¢|ss; 0')

where@ are the parameters of our acoustic mof&ealvhich maps acoustic observations at time
s, to a probability,P(h¢|s;; 8") , of the “correct” HMM stateh;, which is determined by a forced
alignment with the correct sequence of words. The modebkis¢d with a distributed stochastic
gradient descent approach. 2%3 A ,4,1%@3?%
We use an architecture with 8 hidden layers each contairb6g 2ectified linear units and a final
softmax layer with 14,000 labels (HMM targétg). The input is 26 frames of 40 Mel-scaled filter-
bank coefficients with a 10ms advance per frame and we pribdi¢iMM state of 21 frame. The
total number of parameters is about 85M. This is a slightlidated version of the acoustic model
used by Android voice search, and should be considered ay atveng baseline. To train the DNN
acoustic model we use about 2000 hours of spoken Englishwthieh yields about 700M training
examples. This system achieves a frame accuracy of 58.9%6, Aford Error Rate (WER) of 10.9%
on our development set.
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System Test Frame Accuracy WER
Baseline 58.9% 10.9%
10xEnsemble 61.1% 10.7%
Distilled Single model 60.8% 10.7%

Table 1: Frame classification accuracy and WER showing teadistilled single model performs
about as well as the averaged predictions of 10 models thatwged to create the soft targets.

4.1 Results

We trained 10 separate models to predit.|s;; 0), using exactly the same architecture and train- /{@\W
ing procedure as the baseline. The models are randomlglin&d with different initial parameter?a

values and we find that this creates sufficient-diversity ettiined models to allow the averaged

predictions of the ensemble to significantly outperformitidividual models. We have explored

adding diversity to the models by varying the sets of datae¢hah model sees, but we found this

to not significantly change our results, so we opted for thepkr approach. For thie distillation we

tried temperatures df, 2, 5, 10] and used a relative weight of 0.5 on the cross-entropyTGﬁﬂnd

targets, where bold font indicates the best value that wed fos table 1 .

Table 1 shows that, indeed, our distillation approach ie &okextract more useful information from
the training set than simply using the hard labels to traimgls model. More than 80% of the
improvement in frame classification accuracy achieved loygusn ensemble of 10 models is trans-
ferred to the distilled model which is similar to the impravent we observed in our preliminary
experiments on MNIST. The ensemble gives a smaller imprevern the ultimate objective of
WER (on a 23K-word test set) due to the mismatch in the objedtinction, but again, the im-
provement in WER achieved by the ensemble is transferrdtetdistilled model.

We have recently become aware of related work on learningadl stooustic model by matching
the class probabilities of an already trained larger mogleltHowever, they do the distillation at a
temperature of 1 using a large unlabeled dataset and thetidistilled model only reduces the error
rate of the small model by 28% of the gap between the erros m@t¢he large and small models
when they are both trained with hard labels.

} i B 5
5 Training ensembles of specialists on very big datasets> P& —7 SQ}LL Wj‘fﬁ‘f ﬁjwl%‘

) .

Training an ensemble of models is a very S|mple way to takemidge of parallel compullatlon andkﬁ‘gﬂ
,LJ the usual objection that an ensemble requires too much ciatigu at t€st time can be dealt with

by using distillation. There is, however, another impottairjection to ensembles: If the individual

models are Iarge neural networks and the dataset is very, ldrg amount of computatlon ired

at training time is excessive, even though it is easy to [wize. %ﬁ:-i

In this section we give an example of such a dataset and welstinlearning specialist that

each focus on a different confusable subset of the classeaedace the total amount of computation

required to learn an ensemble. The main problem with spstsidhat focus on making fine-grained
distinctions is that thsxwﬂntery easily and we deschibe this overfitting may be prevented by

using soft targets. Qfﬂf kb
o 1

5.1 The JFTdataset '{" % 0 \}‘%‘ ’ﬁgﬁ L‘r\ > "E U vie) !

{

JFT is an internal Google dataset that has 100 million labateges with 15,000 labels. When we, ’ix’ 4/
did this work, Google s baseline model for JFTwas a deepalotonal neural network [7] thathad [« %7~ (A}
been trained for about Six morjxhs using asynchronous stticlimadient descent on a large numbey; » - n L AE BEHER
“of cores. This’ tra|n|ngT1“§?§d‘nNo types of parallellsmpr]r ithere were many replicas of the | g GA ERATFEN
neural net running on different sets of cores and proce Jent mini-batches from the training €

set. Each replica computes the average gradient on itsntumi@i-batch and sends this grad|ent,,p €% w e Qo
to a sharded parameter server which sends back new valu’drtefparameters These new value§’

reflect all of thegnadlents received by the parameter sesviee the last time it sent parameters ;: q;%»'- ?

to the repllcaf,SiCQﬁd each replica is spread over mulﬁpll by putting different subsets of * B4y

i
the neurons on each coré:Ensembie fraining is yetat /parallelism that can be Wrapped f\ exNet

A 1
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JFT 1: Tea party; Eastelr Bridal shower; B%;lby shower; Easter Bunny
JFT 2: Bridge; __gqblestayedhudge ‘Suspension bridge; ViadDisimney; ..
JFT 3: Toyota Corolla E100; Opel Signum; Opel Astra; Mazda Familia
P
Table 2: Example classes from clusters computed by our @owae matrix clustering algorithm

ek

baseline model.

5.2 Specialist Models ﬁg%\éﬁﬁﬁ‘_‘tﬁ%) E’%ﬁ;&%ﬁfﬂ’}i

When the number of classes is very large, it makes sensedarutmbersome mogel to be an en-
semble that'contains one generalist model trained on atflateeand many “specialigt” models, each
of which is trained on data that is highly enriched in exarafitem a very conf subset of the
classes (like different types of mushroom). The softmasisftype of specialist can be made much
smaller by combining all of the classes it does not care ainbwe smg[‘e’ﬁrsﬁalm\c]asﬁtﬁﬁg ,}:ﬁ)%fg\

To reduce overfitting and gére me work of Ieaﬁ?‘%\mm}éeature detectors, each specialist

model is initialized with th& weights of the generalist mbddese weights are then slightly modi-

fied by training the specialist with half its examples comfirggn its ial subset and half sampl QJ

at random from the remainder of the training set. After ﬁrajnwe?bcan correct for the biased trainZ @(33’73 é‘ﬂl L}“g
ing set by mcrementlng the logit of the dustbin class by thg df-theproportion by which the i
specialist class is oversampled. iﬁi’? L.ﬁ\ E}

. f
5.3 Assigning classes to specialists{%ﬂﬁ@}_ REL PR 26z -]}ﬁ -

In order to derive groupings of object categories for themists, we decided to focus on categones
that our full network often confuses. Even though we couldeheomputed t@w ﬁE ?%
and used it as a way to find such clusters, we opted for a swaptmoach that does not require the

true labels to construct the clusters. _ﬁ.ﬁ%ﬁ} ?ﬂ?\,ﬁﬁ]%ﬂ ‘ff ﬁﬁ'fﬁ E\g}}\%

In particular, we apply a clustering algorithm to L%g_@ggj;e_maﬂxof the predictions of our
generalist model, so that a set of clasS&sthat are often predicted together will be used as targets

for one of our specialist models;. We applied an on-line version of the K-means algorithm & th
columns of the covariance matrix, and obtained reasondiéecs (shown in Table 2). We tried
several clustering algorithms which produced similar itssu

N 7 (5t e ;
5.4 Performing inference with ensembles of spemahstéé/; ,‘ _3\ ;fg} 1R\ & 'Ae ngf}-’_ﬂq}. X

Before investigating what happens when specialist modelsliatilled, we wanted to see how well ¢ 5 # _* A‘“;g}gu
Z}’f 8~ &

ensembles containing specialists performed. In additidhe specialist models, we always haveia & S .

generalist model so that we can deal with classes for whichave no specialists and so that we-# {} 1;"4}5@%"?‘9 E

can decide which specialists to use. Given an input imagee do top-one classification in e’/ " _:_ R
00 B oAk TP TS 4T
Gi wrelEl R ~ Step 1: For each test.case, we find thenost probable classes according to the generalist mop\g”;f *?;:{ I3 ‘@‘mgi
N h\ %gf’@ :jéCaIIthls set of class;L\jn our experiments, we used= 1. ffhjri L
RN e =it R A 2.5
s Step 2: We then take all the specialist modetswhose special subset of confusable clasSes, Je 1P AV \
1 has a non-empty intersection withand call this the active set of specialists (note that this set
= wnt40% may be empty). We then find the full probability d|str|but|qru)ver all the classes that mi
\3 q lfl"}“ 2 i{ /'{_ﬂ‘fsox ) o T @ kLﬁﬁ& ’ﬁ*] %%,? R ﬂf }i‘g
49z E AR ig'i{k‘g‘i:‘;%:}‘ﬁ U Z KL(p™, .5_ R P G)m:34FN iv‘“j‘ﬁﬁk
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whereK L denotes the KL divergence, apd® p¢ denote the probability dlstnbutlon ofa spemallst, "

model or the generalist full model. The distributiptt is a distribution over all the specialist classes® © ﬁuﬁb&\'&.ﬂa

of m plus a single dustbin class, so when computing its KL divecgedrom the fullg distribution fﬁf} ﬁﬁ]

we sum all of the probabilities that the figjldistribution assigns to all the classesiirs dustbin. VTN
Ac: FiATRI NS B4

6 kAJ 'ﬁ%ﬁ.@_



System Conditional Test Accuracy Test Accuracy
Baseline 43.1% 25.0%
+ 61 Specialist modelg 45.9% 26.1%

Table 3: Classification accuracy (top 1) on the JFT develohiset.

# of specialists covering

# of test exampleg

delta in top1 correct

relative accuracy chang

Y.

0 350037 0 0.0% A%, Sl
1 141993 +1421 +3.4% ?jf'i’%‘" R
2 67161 +1572 +7.4% i 4N 5 37 o
3 38801 +1124 +8.8% N B A7 R
4 26298 +835 +10.5% |zt %%‘
5 16474 +561 +11.106 | NELY AN R
6 10682 +362 +11.3%
7 7376 +232 +12.8%
8 4703 +182 +13.6%
9 4706 +208 +16.6%

10 or more 9082 +324 +14.1%

Table 4: Top 1 accuracy improvement by # of specialist model&ring correct class on the JFT

test set. p R P
T RPRARR]

Eg. 5 does not have a general_closed fO[____._§_Q|UtI0n thougmwahehe models produce a single
probability for each class the solution is either the arigtimor geometric mean, depending on
whether we usé( L(p, q) or K L(q, p)). We parameterizq = softmax(z) (with T = 1) and we
use gradient descent to optimize the logifs.r.ty eq. 5. Note that this optimization must be carried
out for each image.

With tespect o AR J

5.5 Results

Starting from the trained baseline full network, the spiéstgtrain extremely fast (a few days in- ' ‘ﬁ‘ 3
stead of many weeks for JFT). Also, all the specialists aia&d completely independently. Table"é ﬁ\@ ]Zﬁ)

3 shows the absolute test accuracy for the baseline systdrtharbaseline system combined with
the specialist models. With 61 specialist models, there4s4& relative improvement in test ac- {}B}’F’\‘?
curacy overall. We also report conditional test accuradycivis the accuracy by only considering
examples belonging to the specialist classes, and résgiatr predictions to that subset of classes.

For our JFT specialist experiments, we trained 61 spetialislels, each with 300 classes (plus the
dustbin class). Because the sets of classes for the sgésaie not disjoint, we often had multiple

specialists covering a particular image class. Table 4 shb@& number of test set examples, the
change in the number of examples correct at position 1 whigry tlse specialist(s), and the rela-

tive percentage improvement in topl accuracy for the JFasgatbroken down by the number of

specialists covering the class. We are encouraged by ttera@drend that accuracy improvements
are larger when we have more specialists covering a paatialiss, since training independent
specialist models is very easy to parallelize.

A
6 Soft Targets as Regularizers 59%, -ti}igt:ﬁ, iR} ;T’hff N LU‘W’L Ku— “fﬁlj:fb’}‘

One of our main claims about using soft targets instead af taagets is that a lot of helpful infor-
mation can be carried in soft targets that could not possiblgncoded with a single hard target. In
this section we demonstrate that this is a very large effeetding far less data to fit the 85M pa-
rameters of the baseline speech model described earllde 3ahows that with only 3% of the data
(about 20M examples), training the baseline model with hargets leads to severe overfitting (we
did early stopping, as the accuracy drops sharply aftethirgat4.5%), whereas the same model
trained with soft targets is able to recover almost all tiferimation in the full training set (about
2% shy). It is even more remarkable to note that we did not tad® early stopping: the system
with soft targets simply “converged”to 57%. This shows thdt targets are a very effective way of
communicating the regularities discovered by a modelé&ghion all of the data to another model.



System & training set Train Frame Accuracyl Test Frame Accuracy
Baseline (100% of training set) 63.4% 58.9%
Baseline (3% of training set) 67.3% 44.5%
Soft Targets (3% of training set 65.4% 57.0%

Table 5: Soft targets allow a new model to generalize wethfamly 3% of the training set. The soft
targets are obtained by training on the full training set.

6.1 Using soft targets to prevent specialists from overfittig

The specialists that we used in our experiments on the JEBetatollapsed all of their non-specialist

classes into a single dustbin class. If we allow specialstsave a full softmax over all classe

there may be a much better way to prevent them overfitting tiséng early stopping. A speC|a|| Sﬁ%ﬁ {,‘ﬁﬁj”ﬁ.ﬂiﬁ
is trained on data that is highly enriched in its specialsgas This means that the effective S|ze “}f\ g_:f»g L__f}”‘
its training set is much smaller and it has a strong tendemoyérfit on its spemal classes. This?

problem cannot be solved by making the specialist a lot smb#icausethen we lose the very help{%\ 7 % ‘j/,j[,/l\ 7

_ transfer effects we get from modeling all of the non-spéstialasses. — '

Our experiment using 3% of the speech data strongly sugtiestsf a specialist is initialized with \’/

the weights of the generalist, we can make it retain nearlyf #ils knowledge about the non-special X o L;f
classes by training it with soft targets for the non-spediaéses in addition to training it with hard ‘r"t LT&%-
targets. The soft targets can be provided by the generdlesare currently exploring this approach

/”"”"““) ] h thj\m TZU

7 Relationship to Mixtures of Expert& ﬂ{\ pd L . %17 N
17 . Pk Sk

The use of specialists that are trained on subsets of thehdataome i}gsé)rﬁ%ance to mixtures of

experts [6] which use a gating network to compute the prditabf assigning each example to each

expert. At the same time as the experts are learning to déakimeé examples assigned to them, the

gating network is learning to choose which experts to assagpih example to based on the relative

discriminative performance of the experts for that examplsing the discriminative performance

of the experts to determine the learned assignments is mattdr bhan simply clustering the input

vectors and assigning an expert to each cluster, but it ntakesaining hard to parallelize: First,

the weighted training set for each expert keeps changingvilayathat depends on all the other

experts and second, the gating network needs to comparestf@mance of different experts on

the same example to know how to revise its assignment priitiei These difficulties have meant

that mixtures of experts are rarely used in the regime whexg might be most beneficial: tasks

with huge datasets that contain distinctly different stsse

It is much easier to parallelize the training of multiple cjpdists. We first train a generalist model
and then use the confusion matrix to define the subsets thaptrialists are trained on. Once these
subsets have been defined the specialists can be traineslyemiependently. At test time we can
use the predictions from the generahst model to demdelvvsmemallsts are relevant and only these
specialists need to be runy; )

8 Discussion It

We have shown that dlstllllng WOFk3 very WeII for transfemknowledge from an ense"mble or
from a large highly regularized model into a smaller, distilmodel. On MNIST distillation works
remarkably well even when the transfer set that is useditottra distilled model lacks any examples
of one or more of the classes. For a deep acoustic model thats®on of the one used by Android
voice search, we have shown that nearly all of the improvériex is achieved by training an
ensemble of deep neural nets can be distilled into a singleaheet of the same size which is far
easier to deploy.

For really big neural networks, it can be infeasible evemamta full ensemble, but we have shown
that the performance of a single really big net that has baémed for a very long time can be signif-

icantly improved by learning a large number of specialigspeach of which learns to discriminate
between the classes in a highly confusable cluster. We hatvgat shown that we can distill the

knowledge in the specialists back into the single large net.
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